Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 8(3): 102395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38699410

RESUMO

The University of North Carolina Symposia on Hemostasis began in 2002, with The First Symposium on Hemostasis with a Special Focus on FVIIa and Tissue Factor. They have occurred biannually since and have maintained the primary goal of establishing a forum for the sharing of outstanding advances made in the basic sciences of hemostasis. The 2024 11th Symposium on Hemostasis will bring together leading scientists from around the globe to present and discuss the latest research related to coagulation factors and platelet biology. In keeping with the tradition of the conference, we expect novel cross-disciplinary collaborations to result from bringing together fundamental scientists and physician-scientists from different backgrounds and perspectives. The aim of these collaborations is to springboard the next generation of important advances in the field. This year's program was designed to discuss Coagulation and Platelet Biology at the Intersection of Health and Disease. The goal is to develop a better understanding of the pathophysiologic mechanisms leading to hemostatic and thrombotic disorders as this understanding is critical for the continued development of safe and efficacious therapeutics. Included in this review article are illustrated capsules provided by our speakers that highlight the main conclusions of the invited talks.

2.
J Thromb Haemost ; 22(4): 905-914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266676

RESUMO

Thrombomodulin (TM) is a type 1 receptor best known for its function as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. In addition to its anticoagulant cofactor function, TM also regulates fibrinolysis, complement, and inflammatory pathways. TM is a multidomain receptor protein with a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. This domain is followed by 6 epidermal growth factor-like domains that support the interaction of TM with thrombin. The interaction inhibits the procoagulant function of thrombin and enables the protease to regulate the anticoagulant and fibrinolytic pathways by activating protein C and thrombin-activatable fibrinolysis inhibitor. TM has a Thr/Ser-rich region immediately above the membrane surface that harbors chondroitin sulfate glycosaminoglycans, and this region is followed by a single-spanning transmembrane and a C-terminal cytoplasmic domain. The structure and physiological function of the extracellular domains of TM have been extensively studied, and numerous excellent review articles have been published. However, the physiological function of the cytoplasmic domain of TM has remained poorly understood. Recent data from our laboratory suggest that intracellular signaling by the cytoplasmic domain of TM plays key roles in maintaining quiescence by modulating phosphatase and tensin homolog signaling in endothelial cells. This article briefly reviews the structure and function of extracellular domains of TM and focuses on the mechanism and possible physiological importance of the cytoplasmic domain of TM in modulating phosphatase and tensin homolog signaling in endothelial cells.


Assuntos
Trombina , Trombomodulina , Humanos , Trombomodulina/metabolismo , Trombina/metabolismo , Proteína C/metabolismo , Células Endoteliais/metabolismo , Tensinas , Anticoagulantes , Monoéster Fosfórico Hidrolases
3.
Arterioscler Thromb Vasc Biol ; 44(3): 603-616, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38174561

RESUMO

BACKGROUND: Cleavage of the extracellular domain of PAR1 (protease-activated receptor 1) by thrombin at Arg41 and by APC (activated protein C) at Arg46 initiates paradoxical cytopathic and cytoprotective signaling in endothelial cells. In the latter case, the ligand-dependent coreceptor signaling by EPCR (endothelial protein C receptor) is required for the protective PAR1 signaling by APC. Here, we investigated the role of thrombomodulin in determining the specificity of PAR1 signaling by thrombin. METHODS: We prepared a PAR1 knockout (PAR1-/-) EA.hy926 endothelial cell line by CRISPR/Cas9 and transduced PAR1-/- cells with lentivirus vectors expressing PAR1 mutants in which either Arg41 or Arg46 was replaced with an Ala. Furthermore, human embryonic kidney 293 cells were transfected with wild-type or mutant PAR1 cleavage reporter constructs carrying N-terminal Nluc (NanoLuc luciferase) and C-terminal enhanced yellow fluorescent protein tags. RESULTS: Characterization of transfected cells in signaling and receptor cleavage assays revealed that, upon interaction with thrombomodulin, thrombin cleaves Arg46 to elicit cytoprotective effects by a ß-arrestin-2 biased signaling mechanism. Analysis of functional data and cleavage rates indicated that thrombin-thrombomodulin cleaves Arg46>10-fold faster than APC. Upon interaction with thrombin, the cytoplasmic domain of thrombomodulin recruited both ß-arrestin-1 and -2 to the plasma membrane. Thus, the thrombin cleavage of Arg41 was also cytoprotective in thrombomodulin-expressing cells by ß-arrestin-1-biased signaling. APC in the absence of EPCR cleaved Arg41 to initiate disruptive signaling responses like thrombin. CONCLUSIONS: These results suggest that coreceptor signaling by thrombomodulin and EPCR determines the PAR1 cleavage and signaling specificity of thrombin and APC, respectively.


Assuntos
Receptor PAR-1 , Trombina , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Células Endoteliais/metabolismo , beta-Arrestinas/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 44(2): 352-365, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059351

RESUMO

BACKGROUND: We recently demonstrated that deletion of thrombomodulin gene from endothelial cells results in upregulation of proinflammatory phenotype. In this study, we investigated the molecular basis for the altered phenotype in thrombomodulin-deficient (TM-/-) cells. METHODS: Different constructs containing deletions or mutations in the cytoplasmic domain of thrombomodulin were prepared and introduced to TM-/- cells. The phenotype of cells expressing different derivatives of thrombomodulin and tissue samples of thrombomodulin-knockout mice were analyzed for expression of distinct regulatory genes in established signaling assays. RESULTS: The phosphatase and tensin homolog were phosphorylated and its recruitment to the plasma membrane was impaired in TM-/- cells, leading to hyperactivation of AKT (protein kinase B) and phosphorylation-dependent nuclear exclusion of the transcription factor, forkhead box O1. The proliferative/migratory properties of TM-/- cells were enhanced, and cells exhibited hypersensitivity to stimulation by angiopoietin 1 and vascular endothelial growth factor. Reexpression of wild-type thrombomodulin in TM-/- cells normalized the cellular phenotype; however, thrombomodulin lacking its cytoplasmic domain failed to restore the normal phenotype in TM-/- cells. Increased basal permeability and loss of VE-cadherin were restored to normal levels by reexpression of wild-type thrombomodulin but not by a thrombomodulin construct lacking its cytoplasmic domain. A thrombomodulin cytoplasmic domain deletion mutant containing 3-membrane-proximal Arg-Lys-Lys residues restored the barrier-permeability function of TM-/- cells. Enhanced phosphatase and tensin homolog phosphorylation and activation of AKT and mTORC1 (mammalian target of rapamycin complex 1) were also observed in the liver of thrombomodulin-KO mice. CONCLUSIONS: These results suggest that the cytoplasmic domain of thrombomodulin interacts with the actin cytoskeleton and plays a crucial role in regulation of phosphatase and tensin homolog/AKT signaling in endothelial cells.


Assuntos
Células Endoteliais , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Tensinas , Fator A de Crescimento do Endotélio Vascular , Camundongos Knockout , Monoéster Fosfórico Hidrolases , Mamíferos/metabolismo
5.
J Thromb Haemost ; 21(1): 133-144, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695376

RESUMO

BACKGROUND: In addition to its anticoagulant function in downregulating thrombin generation, activated protein C (APC) evokes pleiotropic cytoprotective signaling activities when it binds to endothelial protein C receptor (EPCR) to activate protease-activated receptor 1 (PAR1) in endothelial cells. OBJECTIVES: To investigate the protective effect of APC in a chlorhexidine gluconate (CG)-induced peritoneal fibrosis model. METHODS: Peritoneal fibrosis was induced in wild-type as well as EPCR- and PAR1-deficient mice via daily injection of CG (0.2 mL of 0.1% CG in 15% ethanol and 85% saline) for 21 days with or without concomitant injection of recombinant human APC derivatives (50 µg/kg of bodyweight). The expression of proinflammatory cytokines and profibrotic markers as well as collagen deposition were analyzed using established methods. RESULTS: CG significantly upregulated the expression of transforming growth factor-ß1 in peritoneal tissues, which culminated in the deposition of excessive extracellular matrix proteins, thickening of the peritoneal membrane, and mesothelial-to-mesenchymal transition in damaged tissues. APC potently inhibited CG-induced peritoneal fibrosis and downregulated the expression of proinflammatory cytokines, collagen deposition, Smad3 phosphorylation, and markers of mesothelial-to-mesenchymal transition (α-smooth muscle actin, vimentin, and N-cadherin). APC also inhibited transforming growth factor-ß1-mediated upregulation of α-smooth muscle actin, Smad3, and fibronectin in human primary mesothelial cells. Employing signaling-selective and anticoagulant-selective variants of APC and mutant mice deficient for either EPCR or PAR1, we demonstrated that the EPCR-dependent signaling function of APC through PAR1 activation was primarily responsible for its antifibrotic activity in the CG-induced peritoneal fibrosis model. CONCLUSION: APC and signaling-selective variants of APC may have therapeutic potential for preventing or treating pathologies associated with peritoneal fibrosis.


Assuntos
Fibrose Peritoneal , Humanos , Animais , Camundongos , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/genética , Fibrose Peritoneal/prevenção & controle , Fator de Crescimento Transformador beta1 , Receptor de Proteína C Endotelial/metabolismo , Células Endoteliais/metabolismo , Proteína C/metabolismo , Actinas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Citocinas/metabolismo , Anticoagulantes/efeitos adversos
6.
Res Pract Thromb Haemost ; 6(5): e12747, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814801

RESUMO

The ISTH London 2022 Congress is the first held (mostly) face-to-face again since the COVID-19 pandemic took the world by surprise in 2020. For 2 years we met virtually, but this year's in-person format will allow the ever-so-important and quintessential creativity and networking to flow again. What a pleasure and joy to be able to see everyone! Importantly, all conference proceedings are also streamed (and available recorded) online for those unable to travel on this occasion. This ensures no one misses out. The 2022 scientific program highlights new developments in hemophilia and its treatment, acquired and other inherited bleeding disorders, thromboinflammation, platelets and coagulation, clot structure and composition, fibrinolysis, vascular biology, venous thromboembolism, women's health, arterial thrombosis, pediatrics, COVID-related thrombosis, vaccine-induced thrombocytopenia with thrombosis, and omics and diagnostics. These areas are elegantly reviewed in this Illustrated Review article. The Illustrated Review is a highlight of the ISTH Congress. The format lends itself very well to explaining the science, and the collection of beautiful graphical summaries of recent developments in the field are stunning and self-explanatory. This clever and effective way to communicate research is revolutionary and different from traditional formats. We hope you enjoy this article and will be inspired by its content to generate new research ideas.

7.
Thromb Haemost ; 122(5): 679-691, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34256393

RESUMO

A patient with hematuria in our clinic was diagnosed with urolithiasis. Analysis of the patient's plasma clotting time indicated that both activated partial thromboplastin time (52.6 seconds) and prothrombin time (19.4 seconds) are prolonged and prothrombin activity is reduced to 12.4% of normal, though the patient exhibited no abnormal bleeding phenotype and a prothrombin antigen level of 87.9%. Genetic analysis revealed the patient is homozygous for prothrombin Y510N mutation. We expressed and characterized the prothrombin-Y510N variant in appropriate coagulation assays and found that the specificity constant for activation of the mutant zymogen by factor Xa is impaired approximately fivefold. Thrombin generation assay using patient's plasma and prothrombin-deficient plasma supplemented with either wild-type or prothrombin-Y510N revealed that both peak height and time to peak for the prothrombin mutant are decreased; however, the endogenous thrombin generation potential is increased. Further analysis indicated that the thrombin mutant exhibits resistance to antithrombin and is inhibited by the serpin with approximately 12-fold slower rate constant. Protein C activation by thrombin-Y510N was also decreased by approximately 10-fold; however, thrombomodulin overcame the catalytic defect. The Na+-concentration-dependence of the amidolytic activities revealed that the dissociation constant for the interaction of Na+ with the mutant has been elevated approximately 20-fold. These results suggest that Y510 (Y184a in chymotrypsin numbering) belongs to network of residues involved in binding Na+. A normal protein C activation by thrombin-Y510N suggests that thrombomodulin modulates the conformation of the Na+-binding loop of thrombin. The clotting defect of thrombin-Y510N appears to be compensated by its markedly lower reactivity with antithrombin, explaining patient's normal hemostatic phenotype.


Assuntos
Protrombina , Trombomodulina , Antitrombina III , Antitrombinas , Transtornos Herdados da Coagulação Sanguínea , Humanos , Proteína C/metabolismo , Protrombina/metabolismo , Trombina/metabolismo , Trombomodulina/metabolismo
8.
Blood Adv ; 6(3): 931-945, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34768285

RESUMO

Plasmodium falciparum-derived histidine-rich protein II (HRPII) has been shown to inhibit heparin-dependent anticoagulant activity of antithrombin (AT) and induce inflammation in vitro and in vivo. In a recent study, we showed that HRPII interacts with the AT-binding vascular glycosaminoglycans (GAGs) not only to disrupt the barrier-permeability function of endothelial cells but also to inhibit the antiinflammatory signaling function of AT. Here we investigated the mechanisms of the proinflammatory function of HRPII and the protective activity of AT in cellular and animal models. We found that AT competitively inhibits the GAG-dependent HRPII-mediated activation of NF-κB and expression of intercellular cell adhesion molecule 1 (ICAM1) in endothelial cells. Furthermore, AT inhibits HRPII-mediated histone H3 citrullination and neutrophil extracellular trap (NET) formation in HL60 cells and freshly isolated human neutrophils. In vivo, HRPII induced Mac1 expression on blood neutrophils, MPO release in plasma, neutrophil infiltration, and histone H3 citrullination in the lung tissues. HRPII also induced endothelial cell activation as measured by increased ICAM1 expression and elevated vascular permeability in the lungs. AT effectively inhibited HRPII-mediated neutrophil infiltration, NET formation, and endothelial cell activation in vivo. AT also inhibited HRPII-meditated deposition of platelets and fibrin(ogen) in the lungs and circulating level of von Willebrand factor in the plasma. We conclude that AT exerts protective effects against pathogenic effects of P falciparum-derived HRPII in both cellular and animal models.


Assuntos
Antígenos de Protozoários/metabolismo , Histidina , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Animais , Anticoagulantes/farmacologia , Antitrombina III/metabolismo , Antitrombina III/farmacologia , Antitrombinas/farmacologia , Células Endoteliais/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Histonas/metabolismo , Inflamação
9.
Circ Res ; 130(2): 252-272, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34930019

RESUMO

BACKGROUND: APC (activated protein C) is a plasma serine protease with anticoagulant and anti-inflammatory activities. EPCR (Endothelial protein C receptor) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. METHODS: Young (3-4 months) and aged (24-26 months) wild-type C57BL/6J mice, as well as EPCR point mutation (EPCRR84A/R84A) knockin C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild-type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. RESULTS: The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCRR84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMPK (AMP-activated protein kinase) mediates acute adaptive response while AKT (protein kinase B) is involved in chronic metabolic programming in the hearts with APC treatment. CONCLUSIONS: I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.


Assuntos
Envelhecimento/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína C/metabolismo , Animais , Cardiotônicos/uso terapêutico , Receptor de Proteína C Endotelial/sangue , Feminino , Coração/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Proteína C/uso terapêutico
10.
Cell Physiol Biochem ; 55(5): 605-617, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34655467

RESUMO

BACKGROUND/AIMS: Binding of histones to molecular pattern recognition receptors on endothelial cells and leukocytes provokes proinflammatory responses and promotes activation of coagulation. Histones also bind therapeutic heparins, thereby neutralizing their anticoagulant functions. The aim of this study was to test the hypothesis that histones can interact with the antithrombin (AT)-binding vascular glycosaminoglycans (GAGs) to induce inflammation and inhibit the anti-inflammatory function of AT. METHODS: We evaluated the heparin-binding function of histones by an AT-dependent protease-inhibition assay. Furthermore, we treated endothelial cells with histones in the absence and presence of AT and monitored cellular phenotypes employing established signaling assays. RESULTS: Histones neutralized AT-dependent anticoagulant function of heparin in both purified protease-inhibition and plasma-based assays. Histones also disrupted endothelial cell barrier-permeability function by a GAG-dependent mechanism as evidenced by the GAG-antagonist, surfen, abrogating their disruptive effects. Further studies revealed histones and AT compete for overlapping binding-sites on GAGs, thus increasing concentrations of one protein abrogated effects of the other. Histones elicited proapoptotic effects by inducing nuclear localization of PKC-δ in endothelial cells and barrier-disruptive effects by destabilizing VE-cadherin, which were inhibited by AT, but not by a D-helix mutant of AT incapable of interacting with GAGs. Finally, histones induced release of Weibel-Palade body contents, VWF and angiopoietin-2, and promoted expression of cell adhesion molecules on endothelial cells, which were all downregulated by AT but not by D-helix mutant of AT. CONCLUSION: We conclude that histones and AT compete for overlapping binding sites on vascular GAGs to modulate coagulation and inflammation.


Assuntos
Antitrombina III/metabolismo , Glicosaminoglicanos/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Coagulação Sanguínea , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/sangue , Ligação Proteica
11.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34291736

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a pandemic. Severe disease is associated with dysfunction of multiple organs, but some infected cells do not express ACE2, the canonical entry receptor for SARS-CoV-2. Here, we report that the C-type lectin receptor L-SIGN interacted in a Ca2+-dependent manner with high-mannose-type N-glycans on the SARS-CoV-2 spike protein. We found that L-SIGN was highly expressed on human liver sinusoidal endothelial cells (LSECs) and lymph node lymphatic endothelial cells but not on blood endothelial cells. Using high-resolution confocal microscopy imaging, we detected SARS-CoV-2 viral proteins within the LSECs from liver autopsy samples from patients with COVID-19. We found that both pseudo-typed virus enveloped with SARS-CoV-2 spike protein and authentic SARS-CoV-2 virus infected L-SIGN-expressing cells relative to control cells. Moreover, blocking L-SIGN function reduced CoV-2-type infection. These results indicate that L-SIGN is a receptor for SARS-CoV-2 infection. LSECs are major sources of the clotting factors vWF and factor VIII (FVIII). LSECs from liver autopsy samples from patients with COVID-19 expressed substantially higher levels of vWF and FVIII than LSECs from uninfected liver samples. Our data demonstrate that L-SIGN is an endothelial cell receptor for SARS-CoV-2 that may contribute to COVID-19-associated coagulopathy.


Assuntos
COVID-19 , Capilares , Moléculas de Adesão Celular/metabolismo , Células Endoteliais , Lectinas Tipo C/metabolismo , Fígado/irrigação sanguínea , Vasos Linfáticos , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/fisiologia , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Capilares/metabolismo , Capilares/patologia , Capilares/virologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Perfilação da Expressão Gênica/métodos , Humanos , Fígado/patologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Vasos Linfáticos/virologia , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus
12.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836597

RESUMO

Thrombomodulin (TM) is a thrombin receptor on endothelial cells that is involved in promoting activation of the anticoagulant protein C pathway during blood coagulation. TM also exerts protective anti-inflammatory properties through a poorly understood mechanism. In this study, we investigated the importance of TM signaling to cellular functions by deleting it from endothelial cells by CRISPR-Cas9 technology and analyzed the resultant phenotype of TM-deficient (TM-/- ) cells. Deficiency of TM in endothelial cells resulted in increased basal permeability and hyperpermeability when stimulated by thrombin and TNF-α. The loss of the basal barrier permeability function was accompanied by increased tyrosine phosphorylation of VE-cadherin and reduced polymerization of F-actin filaments at cellular junctions. A significant increase in basal NF-κB signaling and expression of inflammatory cell adhesion molecules was observed in TM-/- cells that resulted in enhanced adhesion of leukocytes to TM-/- cells in flow chamber experiments. There was also a marked increase in expression, storage, and release of the von Willebrand factor (VWF) and decreased storage and release of angiopoietin-2 in TM-/- cells. In a flow chamber assay, isolated platelets adhered to TM-/- cells, forming characteristic VWF-platelet strings. Increased VWF levels and inflammatory foci were also observed in the lungs of tamoxifen-treated ERcre-TMf/f mice. Reexpression of the TM construct in TM-/- cells, but not treatment with soluble TM, normalized the cellular phenotype. Based on these results, we postulate cell-bound TM endows a quiescent cellular phenotype by tightly regulating expression of procoagulant, proinflammatory, and angiogenic molecules in vascular endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Trombomodulina/metabolismo , Angiopoietina-2/metabolismo , Animais , Plaquetas/citologia , Permeabilidade Capilar , Adesão Celular , Células Endoteliais/citologia , Endotélio Vascular/citologia , Humanos , Inflamação , Leucócitos/citologia , Pulmão/metabolismo , Camundongos , Receptor PAR-1/metabolismo , Trombina/metabolismo , Trombomodulina/deficiência , Trombomodulina/genética , Fator de von Willebrand/metabolismo
13.
Thromb Haemost ; 121(11): 1448-1463, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33706396

RESUMO

Activated protein C (APC) is an anticoagulant plasma serine protease which exhibits potent cytoprotective and anti-inflammatory activities. Here, we studied protective effects of APC on the proinflammatory function of polyinosinic:polycytidylic acid [poly(I:C)], a synthetic analog of viral double-stranded RNA, in cellular and animal models. Poly(I:C) induced histone H3 extranuclear translocation via interaction with toll-like receptor 3 in two established endothelial cell lines. Furthermore, poly(I:C) induced histone H3 extranuclear translocation in J774A.1 macrophages and human neutrophils and formation of macrophage and neutrophil extracellular traps (ETs). Mechanistically, poly(I:C) was found to upregulate expression of peptidylarginine deiminase 4 and enhance its interaction with histone H3, thereby leading to increased histone citrullination and neutrophil ET formation. Poly(I:C) elicited proinflammatory signaling responses by inducing nuclear factor kappa B activation and disrupting endothelial cell permeability. In vivo, poly(I:C) enhanced cell surface expression of Mac-1 on neutrophils in mice and facilitated their infiltration to lung tissues. Poly(I:C) also downregulated thrombomodulin expression in mouse tissues and reduced its circulating soluble level in plasma. We demonstrate in this study that APC and a signaling-selective mutant of APC effectively inhibit proinflammatory signaling effects of poly(I:C) in both cellular and animal models. We further demonstrate that unlike the requirement for endothelial protein C receptor on endothelial cells, the integrin Mac-1 is involved in the protease-activated receptor 1-dependent APC inhibition of macrophage ET formation in J774A.1 cells. Taken together, these results support a key role for APC signaling in inhibiting the viral mimetic-induced proinflammatory signaling responses and histone translocation-associated formation of ETs by innate immune cells.


Assuntos
Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Proteína C/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Ativação Enzimática , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neutrófilos/imunologia , Neutrófilos/metabolismo , Poli I-C , Proteína C/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais
14.
Biochim Biophys Acta Gen Subj ; 1865(6): 129892, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722640

RESUMO

We previously demonstrated that heterozygous Gly197 to Arg mutation in PROC is associated with venous thrombosis due to the mutation abrogating both zymogenic and enzymatic activities of protein C and activated protein C (APC). In this study, we investigated the role of Gly197 on the structure and function of protein C by replacing it with Ala, Lys and Glu in separate constructs. Characterization of protein C mutants indicated their activation by thrombin is improved ~5-20-fold with the order of PC-G197K > PC-G197E > PC-G197A > PC-WT. Interestingly, the cofactor function of thrombomodulin (TM) in promoting the activation of zymogens by thrombin followed the reverse order of PC-WT > PC-G197A > PC-G197E > PC-G197K. The thrombin-generation inhibitory profiles of zymogens in a tissue factor-mediated thrombin generation assay using protein C-deficient plasma with or without supplementation with TM followed the same order of zymogen activation in the purified system. Evaluation of anticoagulant activities of APC derivatives by prothrombinase and aPTT assays revealed a normal activity for APC-G197A but dramatically impaired activity for the other two mutants. In the endothelial cell permeability assay, APC-G197A exhibited normal antiinflammatory activity, but the other two mutants were nearly inactive. These results suggest that Gly197 plays a key role in TM cofactor-dependent protein C activation by thrombin. It facilitates the recognition of protein C by thrombin in the presence of TM but impedes it in the absence of the cofactor. In APC, a small residue at this position is required for the proper folding/reactivity of the active-site pocket of the protease, a hypothesis supported by structural modeling.


Assuntos
Anti-Inflamatórios/farmacologia , Anticoagulantes/farmacologia , Glicina/genética , Mutação , Proteína C/química , Proteína C/metabolismo , Fator V/metabolismo , Glicina/química , Glicina/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Proteína C/genética , Conformação Proteica , Relação Estrutura-Atividade , Trombina/metabolismo , Trombomodulina/metabolismo
15.
J Thromb Haemost ; 18(12): 3142-3153, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780936

RESUMO

Antithrombin (AT) is a major plasma glycoprotein of the serpin superfamily that regulates the proteolytic activity of the procoagulant proteases of both intrinsic and extrinsic pathways. Two important structural features that participate in the regulatory function of AT include a mobile reactive center loop that binds to active site of coagulation proteases, trapping them in the form of inactive covalent complexes, and a basic D-helix that binds to therapeutic heparins and heparan sulfate proteoglycans (HSPGs) on vascular endothelial cells. The binding of D-helix of AT by therapeutic heparins promotes the reactivity of the serpin with coagulation proteases by several orders of magnitude by both a conformational activation of the serpin and a template (bridging) mechanism. In addition to its essential anticoagulant function, AT elicits a potent anti-inflammatory signaling response when it binds to distinct vascular endothelial cell HSPGs, thereby inducing prostacyclin synthesis. Syndecans-4 has been found as a specific membrane-bound HSPG receptor on endothelial cells that relays the signaling effect of AT to the relevant second messenger molecules in the signal transduction pathways inside the cell. However, following cleavage by coagulation proteases and/or by spontaneous conversion to a latent form, AT loses both its anti-inflammatory activity and high-affinity interaction with heparin and HSPGs. Interestingly, these low-affinity heparin conformers of AT elicit potent proapoptotic and antiangiogenic activities by also binding to specific HSPGs by unknown mechanisms. This review article will summarize current knowledge about mechanisms through which different conformers of AT exert their serine protease inhibitory and intracellular signaling functions in these biological pathways.


Assuntos
Anticoagulantes , Antitrombinas , Antitrombina III , Células Endoteliais , Heparina , Transdução de Sinais
16.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32709711

RESUMO

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Integrina beta3/fisiologia , Podócitos/fisiologia , Proteína C/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Citoproteção , Receptor de Proteína C Endotelial/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-1/fisiologia
17.
Thromb Haemost ; 120(7): 1045-1055, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32422680

RESUMO

Antithrombin (AT) is a serine protease inhibitor that regulates the activity of coagulation proteases of both intrinsic and extrinsic pathways. We identified an AT-deficient patient with a heterozygous Thr90Ser (T90S) mutation who experiences recurrent venous thrombosis. To understand the molecular basis of the clotting defect, we expressed AT-T90S in mammalian cells, purified it to homogeneity, and characterized its properties in established kinetics, binding, and coagulation assays. The possible effect of mutation on the AT structure was also evaluated by molecular modeling. Results demonstrate the inhibitory activity of AT-T90S toward thrombin and factor Xa has been impaired three- to fivefold in both the absence and presence of heparin. The affinity of heparin for AT-T90S has been decreased by four- to fivefold. Kinetic analysis revealed the stoichiometry of AT-T90S inhibition of both thrombin and factor Xa has been elevated by three- to fourfold in both the absence and presence of heparin, suggesting that the reactivity of coagulation proteases with AT-T90S has been elevated in the substrate pathway. The anticoagulant activity of AT-T90S has been significantly impaired as analyzed in the AT-deficient plasma supplemented with AT-T90S. The anti-inflammatory effect of AT-T90S was also decreased. Structural analysis predicts the shorter side-chain of Ser in AT-T90S has a destabilizing effect on the structure of AT and/or the AT-protease complex, possibly increasing the size of an internal cavity and altering a hydrogen-bonding network that modulates conformations of the allosterically linked heparin-binding site and reactive center loop of the serpin. This mutational effect increases the reactivity of AT-T90S with coagulation proteases in the substrate pathway.


Assuntos
Deficiência de Antitrombina III/genética , Antitrombina III/genética , Coagulação Sanguínea/genética , Heterozigoto , Mutação , Trombose Venosa/genética , Adulto , Antitrombina III/metabolismo , Deficiência de Antitrombina III/sangue , Deficiência de Antitrombina III/diagnóstico , Fator Xa/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Fenótipo , Conformação Proteica , Recidiva , Relação Estrutura-Atividade , Trombina/metabolismo , Trombose Venosa/sangue , Trombose Venosa/diagnóstico
18.
Arterioscler Thromb Vasc Biol ; 40(7): 1748-1762, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32404004

RESUMO

OBJECTIVE: Native and latent conformers of AT (antithrombin) induce anti-inflammatory and proapoptotic signaling activities, respectively, in vascular endothelial cells by unknown mechanisms. Synd-4 (syndecan-4) has been identified as a receptor that is involved in transmitting signaling activities of AT in endothelial cells. Approach and Results: In this study, we used flow cytometry, signaling assays, immunoblotting and confocal immunofluorescence microscopy to investigate the mechanism of the paradoxical signaling activities of high-affinity heparin (native) and low-affinity heparin (latent) conformers of AT in endothelial cells. We discovered that native AT binds to glycosaminoglycans on vascular endothelial cells via its heparin-binding D-helix to induce anti-inflammatory signaling responses by recruiting PKC (protein kinase C)-δ to the plasma membrane and promoting phosphorylation of the Synd-4 cytoplasmic domain at Ser179. By contrast, the binding of latent AT to endothelial cells to a site(s), which is not competed by the native AT, induces a proapoptotic effect by localizing PKC-δ to the perinuclear/nuclear compartment in endothelial cells. Overexpression of a dominant-negative form of PKC-δ resulted in inhibition of anti-inflammatory and proapoptotic signaling activities of both native and latent AT. CONCLUSIONS: These results indicate that the native and latent conformers of AT may exert their distinct intracellular signaling effects through differentially modulating the subcellular localization of PKC-δ in endothelial cells.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas Antitrombina/farmacologia , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Proteína Quinase C-delta/metabolismo , 6-Cetoprostaglandina F1 alfa/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C-delta/genética , Transdução de Sinais , Sindecana-4/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
J Thromb Haemost ; 18(5): 1141-1153, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32078247

RESUMO

BACKGROUND: Activated protein C (APC) downregulates thrombin generation by inactivating procoagulant cofactors Va and VIIIa by limited proteolysis. We identified two protein C-deficient patients both of whom carry a heterozygous Gly197 to Arg (G197R) mutation in PROC and experience venous thrombosis. OBJECTIVE: The objective of this study was to determine the molecular basis of the clotting defect in patients carrying the G197R mutation. METHODS: We expressed protein C-G197R in mammalian cells and characterized its properties in established coagulation and anti-inflammatory assay systems. RESULTS: The activation of protein C-G197R by thrombin was improved ~10-fold; however, its activation by thrombin was not promoted by thrombomodulin (TM). In a tissue factor-mediated thrombin generation assay, the addition of soluble TM to protein C-deficient plasma, supplemented with protein C-G197R, did not have a significant inhibitory effect on thrombin generation parameters. APC-G197R did not exhibit a significant anticoagulant activity in either purified or plasma-based assay systems. APC-G197R was essentially inactive because it showed no activity in an aPTT assay. Anti-inflammatory activity of APC-G197R was also dramatically impaired as determined by an endothelial cell permeability assay. Structural modeling predicted that the side-chain of Arg cannot be accommodated at this site of APC without a major distortion of the local structure that appears to propagate and adversely affect the reactivity/folding of the catalytic pocket. CONCLUSION: The G197R mutation in patients appears to be functionally equivalent to a heterozygous protein C knockout with half of the protein having no significant activity and thus causing thrombosis.


Assuntos
Proteína C , Trombose , Animais , Testes de Coagulação Sanguínea , Heterozigoto , Humanos , Mutação , Proteína C/genética , Trombina , Trombose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA